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Abstract

Using a nonlinear Fokker–Planck perspective we re-formulate the linear
discrepancy model proposed by Boster and colleagues that describes the
emergence of risky shifts during group decision making. Analytical expressions
for the stationary case are derived and risky shifts are obtained by Monte
Carlo simulations. Striking similarities with the Kuramoto model for group
synchronization are pointed out.

PACS numbers: 05.40.−a, 02.50.Ga, 89.65.−s

1. Introduction

Several efforts have been made to understand human group behavior from a physicist’s point
of view [1–6]. The reason for this is that group behavior in general and group decision making
in particular emerges due to interactions between group members. Consequently, taking a
physicist’s perspective, in such instances we are dealing with many-body systems composed
of interacting subsystems. For example, interaction in terms of communication and in terms of
confrontation of individuals with group standards determines decision making in groups and
the emergence of social conformity [7–10]. Synchronization during clapping is established
by acoustic couplings between group members [4]. Bridge vibrations can be excited by
walkers who walk in synchronization and are coupled with each other indirectly via the very
same vibrational modes that they excite [5]. In particular, similarly to mean field theory the
dynamics of group behavior can be captured by means of nonlinear Markov processes [11–20]
as described by nonlinear Fokker–Planck equations [21–33].

In a previous study, the nonlinear Markov perspective has been applied to propose a
theoretical model for the emergence of social conformity [6]. The aim of the present study
is to address another important phenomenon in social psychology from the perspective of
nonlinear Markov processes: the emergence of risky shifts (or group polarization) during
group decision making. Let us assume a group discusses an issue and exhibits at the beginning
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of the discussion on the average a mildly risky attitude. In several experiments it has been
shown that after the discussion the average attitude can change in the direction of a more risky
attitude [10]. This is the so-called risky shift. It should be mentioned that also the opposite
phenomenon can be observed. A group that initially exhibits a moderately cautious attitude
becomes even more cautious during the discussion. Consequently, in the literature the risky
shift and the cautious shift are regarded as two instances of a polarity shift that arises from
interactions between group members [10]. Boster and colleagues [34–36] proposed a linear
discrepancy model to describe the emergence of risky shifts. The objective of our study is to
re-formulate this model in terms of a nonlinear Markov process defined by a nonlinear Fokker–
Planck equation. In doing so, we will supplement the model with a particular fluctuating force
(which has been neglected in [34]), we will obtain an analytical expression for the stationary
statistical properties of the group decision process, and we will be able to identify analogies
to a benchmark model for group synchronization: the Kuramoto model [25].

2. Nonlinear Fokker–Planck modeling of the emergence of risky shifts

2.1. Linear discrepancy model

Along the same lines as the suggestion by Boster and colleagues [34], we will assign real
numbers to arguments and opinions. That is, we will put opinions on a continuous scale
or interval �. Let Xi denote the opinion of a member i participating in a group discussion
involving N participants. By convention we say that Xi = 0 corresponds to a neutral opinion,
whereas Xi > 0 (Xi < 0) describes a risky (cautious) opinion. Moreover, we assume that
larger positive Xi values describe riskier opinions than smaller positive Xi values. For the
sake of simplicity, we will define opinions Xi on the whole real line: � = R. Let t denote time
measured on a continuous scale. The beginning of a group discussion session will be denoted
by t = 0. Accordingly, the trajectory Xi(t) describes the opinion of a participant during group
decision making. In order to apply concepts of mean field theory to group decision making,
we neglect finite-size effects and will consider large groups in the limiting case N → ∞. In
this case, the function ρ(x, t) = limN→∞ N−1 ∑N

i=1 δ(x − Xi(t)) (where δ(·) is the Dirac
delta function) corresponds to a probability density and describes how opinions are distributed
in a discussion group under consideration. Likewise, 〈X(t)〉ρ = ∫

�
xρ(x, t) dx denotes the

mean opinion of the group at time t. We will refer to 〈X(t)〉ρ as group opinion. As suggested
in [34], we assume that participants in general do not present their arguments and opinions
with the same frequency. We assume that a speaker that has an opinion consistent with or
close to the group opinion presents his or her argument more frequently than a speaker who
holds an opinion that deviates to a large extent from the group opinion. Let f (x, 〈X〉ρ) denote
the frequency with which a speaker (a member of the discussion group) expresses his or
her opinion X given that the group exhibits a group opinion 〈X〉ρ . In analogy to the model
proposed in [34], we assume that the opinion X(t) of a representative group member satisfies
the stochastic evolution equation

d

dt
X(t) = −α

∫
�

f (x ′, 〈X(t)〉ρ)(x − x ′)ρ(x ′, t) dx ′ +
√

Q�(t). (1)

According to equation (1), a discussant with opinion X changes his or her opinion when
confronted with the opinion X′ of another discussant. The change is proportional to the linear
discrepancy between the two opinions measured in terms of X − X′ and tends to reduce the
discrepancy. The parameter α > 0 is the proportional factor relating the opinion change dX/dt

to the discrepancy X − X′. The linear discrepancy X − X′ is weighted with the percentage
dρ = ρ(x ′, ·) dx ′ of group members that exhibit opinion X′. In addition, the discrepancy
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X − X′ is weighted with the frequency f that members of the discussion group with opinion
X′ indeed actively advance their opinions (and not just passively listen to the arguments
made by others). The total deterministic impact of all group members on the representative
group member is given by the integral −α

∫
�

f (x ′, 〈X(t)〉ρ)(x − x ′)ρ(x ′, t) dx ′. The product√
Q�(t) in the stochastic evolution equation (1) describes a fluctuating force that is composed

of the so-called noise amplitude Q � 0 and a time-dependent function �(t). Note that the
term

√
Q�(t) corresponds to a so-called additive fluctuating force. We will briefly consider

alternative (multiplicative) types of fluctuating forces in the conclusions.
We are interested in modeling group decision making by the most simple but not

purely random process. This is a Markov process (see [37] for classification into purely
random processes, Markov processes and non-Markov processes). Consequently, we assume
that � is defined by a Langevin force [37]. As a normalization condition for � we use
〈�(t)�(t ′)〉 = 2δ(t−t ′). In order to obtain a closed description we use the mean field approach
and replace the ensemble of group members with the statistical ensemble of the representative
member X. To this end, we introduce the probability density P(x, t) = 〈δ(x − X(t)〉 (note
that here and in what follows 〈·〉 without index ρ denotes averaging with respect to a statistical
ensemble). Having defined P, we replace in equation (1) the group opinion distribution ρ by the
probability density P of the representative group member X. That is, we put ρ(x, t) = P(x, t).
Likewise, we replace 〈X〉ρ by 〈X〉 (i.e. by

∫
�

xP (x, t) dx). For details see [25, 33, 38]. Then,
equation (1) becomes a closed stochastic evolution equation of the form

d

dt
X(t) = −α

∫
�

f (x ′, 〈X(t)〉)(x − x ′)P (x ′, t) dx ′ +
√

Q�(t). (2)

Equation (2) is a self-consistent Langevin equation [33]. The corresponding evolution equation
for P is given by a nonlinear Fokker–Planck equation [33] and reads

∂

∂t
P (x, t) = ∂

∂x
α

(∫
�

f (x ′, 〈X(t)〉)(x − x ′)P (x ′, t) dx ′
)

P(x, t) + Q
∂2

∂x2
P(x, t). (3)

Aiming at an analytical discussion, we model f by a Gaussian function,

f (x, 〈X〉) =
√

λ

2π
exp

{
−λ

2
(x − 〈X〉)2

}
, (4)

with λ > 0 as opposed to the function originally proposed by Boster and colleagues [34]. Note
that just as in [34] the function (4) decays monotonically with increasing deviation |x − 〈X〉|.
In sum, equations (3) and (4) define in terms of a nonlinear Fokker–Planck equation a linear
discrepancy model that is consistent with the fundamental ideas centered around the originally
proposed linear discrepancy model by Boster and colleagues [34].

Before examining the properties of the model given by equations (3) and (4), we note that
the self-consistent Langevin equation (2) can alternatively be written as

d

dt
X(t) = −α (〈f 〉X − 〈Xf 〉) +

√
Q�(t), (5)

with the expectation values defined by

〈f 〉 =
∫

�

f (x, 〈X(t)〉)P (x, t) dx, (6)

〈Xf 〉 =
∫

�

xf (x, 〈X(t)〉)P (x, t) dx. (7)

In general, these expectation values 〈f 〉 and 〈Xf 〉 depend on time t. In the stationary case,
however, they become constants.
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2.2. Stationary case

Our next objective is to determine the stationary probability density Pst(x) of the linear
discrepancy model defined by equations (3) and (4). In the stationary case, we have the
stationary expectation values

〈X〉st =
∫

�

xPst(x) dx, (8)

〈f 〉st =
∫

�

f (x, 〈X〉st)Pst(x) dx, (9)

〈Xf 〉st =
∫

�

xf (x, 〈X〉st)Pst(x) dx. (10)

Likewise, in the stationary case the nonlinear Fokker–Planck equation (3) becomes

−α(〈f 〉stx − 〈xf 〉st)Pst = Q
d

dx
Pst. (11)

Consequently, the stationary probability density is given by

Pst(x) = 1

Z
exp

{
−α〈f 〉st

2Q

(
x − 〈Xf 〉st

〈f 〉st

)2
}

, (12)

where Z is a normalization constant such that
∫
�

Pst(x) dx = 1 holds. The unknown
expectation values 〈X〉st, 〈f 〉st, 〈Xf 〉st can be determined by solving the self-consistency
equations

〈X〉st = 1

Z

∫
�

x exp

{
−α〈f 〉st

2Q

(
x − 〈Xf 〉st

〈f 〉st

)2
}

dx, (13)

〈f 〉st = 1

Z

∫
�

f (x, 〈X〉st) exp

{
−α〈f 〉st

2Q

(
x − 〈Xf 〉st

〈f 〉st

)2
}

dx, (14)

〈Xf 〉st = 1

Z

∫
�

xf (x, 〈X〉st) exp

{
−α〈f 〉st

2Q

(
x − 〈Xf 〉st

〈f 〉st

)2
}

dx. (15)

(For the concept of self-consistency equations see, e.g., [25, 33].) From equation (13) it
immediately follows that 〈X〉st = 〈Xf 〉st/〈f 〉st. That is, we have a factorization like

〈Xf 〉st = 〈X〉st〈f 〉st. (16)

Equation (16), in turn, implies that the stationary probability density (12) can be written as

Pst(x) = 1

Z
exp

{
−α〈f 〉st

2Q
(x − 〈X〉st)

2

}
. (17)

Turning to the second self-consistency equation, from equation (14) a detailed calculation
yields the intermediate result:

〈f 〉st = αλ

2π(λQ + α〈f 〉st)
. (18)

In the limiting case λ → ∞, we have f (x, 〈X〉) = δ(x − 〈X〉) and from equation (18) it
follows that 〈f 〉st = α/(2πQ). This implies that

Pst(x) = 1

Z
exp

{
− α2

4πQ2
(x − 〈X〉st)

2

}
, (19)
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such that the spread of the opinions can be measured in terms of the variance σ 2 = 2πQ2/α2.
In the general case, we have λ < ∞. From equation (18) it follows that

〈f 〉st = −λQ

2α
+

√
λ

2π
+

(
λQ

2α

)2

. (20)

Using this result in combination with the third self-consistency equation (15), we obtain

〈Xf 〉st = 〈X〉st〈f 〉st. (21)

That is, the third self-consistency equation is redundant and yields the same result as the first
self-consistency equation. This indicates that the expectation values 〈X〉st, 〈f 〉st, 〈Xf 〉st are
not completely defined in terms of the model parameters λ, α,Q. In fact, the linear discrepancy
model given by equations (3) and (4) is invariant against translations. If we replace x by x + ξ

for an arbitrary real number ξ we obtain equations (3) and (4) again. Consequently, the mean
value 〈X〉st is not fixed by the model parameters λ, α,Q (we will return to this issue in the
conclusions). Rather, the mean value 〈X〉st depends on the initial probability density P(x, 0).
Let ρ(x, 0) = u(x) denote the initial distribution of opinions in the discussion group under
consideration. In line with our mean field approach, we put ρ(x, 0) = P(x, 0) = u(x). Then,
we may say that the final stationary group opinion 〈X〉st depends on the initial distribution
of opinions u, whereas the expectation value 〈f 〉st does not depend on u and is completely
defined by the parameter set {λ, α,Q}.

This situation is in analogy with the Kuramoto model of an infinitely large ensemble
of interacting subsystems that have angular state variables defined on the interval [0, 2π ]
[25, 26, 33]. The nonlinear Fokker–Planck equation of the Kuramoto model reads

∂

∂t
P (x, t) = α

∂

∂x

(∫
�

sin(x − x ′)P (x ′, t) dx ′
)

P(x, t) + Q
∂2

∂x2
P(x, t), (22)

with α,Q � 0. In the context of the Kuramoto model, the so-called cluster phase and cluster
amplitude [33] can be considered as counterparts to the mean and variance of the linear
discrepancy model. It is well known that for the Kuramoto model the stationary cluster phase
is not entirely fixed by the parameters of the Kuramoto model but depends on the initial
distribution of angular variables. In contrast, the stationary cluster amplitude of the Kuramoto
model is completely defined in terms of model parameters. For details see [25, 26, 33].

Let us return to the derivation of the stationary probability density of the linear discrepancy
model (3). From equation (17) it follows that the opinion variance in the stationary case is
given by

σ 2 = Q

α〈f 〉st
. (23)

Let us first discuss the special case λ → 0. In this case, we have 〈f 〉st → 0 (see
equation (20)) which implies that σ 2 → ∞. Next, let us consider the general case λ > 0. To
this end, we substitute equation (20) into equation (23). Thus, we obtain

σ 2 = 2

λ

1√
1 + 2α2

πλQ2 − 1
. (24)

In sum, the stationary probability density (19) can be written as

Pst(x) = 1√
2πσ 2

exp

{
− (x − 〈X〉st)

2

2σ 2

}
, (25)

with σ 2 defined in equation (24).
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Table 1. Opinion variance σ 2 for several limiting cases.

J = λ−1, D λ−1 D

J → 0 σ 2 → 2πD2 σ 2 → 0
J → ∞ σ 2 → ∞ σ 2 → ∞

Let us consider some further limiting cases. We see that for Q/α → 0 we have σ 2 → 0.
For Q/α → ∞ we have σ 2 → ∞. At that stage we may focus on the interpretation of the
parameters α and Q. To this end, we first note that we may rescale time t by t = αt̃ and
introduce the probability density P̃ (x, t̃) = P(x, t = αt̃) with respect to the rescaled time
frame t̃ . Dividing both sides of the nonlinear Fokker–Planck equation (3) by α, we obtain

∂

∂t
P̃ (x, t̃) = ∂

∂x

(∫
�

f (x ′, 〈X〉)(x − x ′)P̃ (x ′, t̃) dx ′
)

P̃ (x, t̃) + D
∂2

∂x2
P̃ (x, t̃), (26)

with D = Q/α. The relation t = αt̃ indicates that α defines a characteristic time scale. That
is, α may be regarded as a relaxation constant. In contrast, the ratio Q/α which we have
denoted above by D describes the diffusive properties of the decision process. With these
notions at hand, we can summarize our result as follows. The stationary probability density
of the linear discrepancy model (3), (4) is given by

Pst(x|u) = 1√
2πσ 2

exp

{
− (x − 〈X〉st)

2

2σ 2

}
, (27)

with

σ 2 = 2

λ

1√
1 + 2

πλD2 − 1
. (28)

As indicated by the notation Pst(x|u), the stationary probability density depends on the initial
distribution u. More precisely, it is the group opinion 〈X〉st that depends on the initial
probability density u(x). In contrast, the opinion variance σ 2 is independent of the initial
distribution u of opinions and is completely determined by the parameter λ and the diffusion
parameter D = Q/α. Furthermore, we have the special cases λ → 0 ⇒ σ 2 → ∞,
λ → ∞ ⇒ σ 2 → 2πD2, D → 0 ⇒ σ 2 → 0, D → ∞ ⇒ σ 2 → ∞.

In order to illustrate how σ 2 depends on λ and D, we use 1/λ instead of λ. Then σ 2

increases monotonically when 1/λ and D increase as shown in figure 1. Moreover limiting
cases can be summarized as shown in table 1.

2.3. Stability analysis by means of an H-theorem

Stationary solutions of nonlinear Fokker–Planck equations may become unstable at critical
parameters. Bifurcations to multi-stable states [25, 33], oscillatory behavior [39, 40] and even
chaos [41–43] have been observed. Since stationary solutions of the linear discrepancy model
(3) correspond to Gaussian distributions, we will examine the stability of these Gaussian
solutions in a two-step approach. First, we will examine the evolution of the mean m and the
variance K of discussion groups with initially Gaussian distributed opinions. Second, we will
study the stability of the Gaussian stationary distributions of the form (27), (28) in the general
case for arbitrary initial distributions.

Let

PG(x, t) =
√

1

2πK(t)
exp

{
− [x − m(t)]2

2K(t)

}
(29)

6
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Variance σ2
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Figure 1. Contour plot of opinion variance σ 2 as defined by equation (28). σ 2 increases
monotonically with 1/λ and D.

denote a Gaussian time-dependent distribution with mean m(t) and variance K(t). From the
Langevin equation (2) it follows that

d

dt
m(t) = −α(〈f 〉m(t) − 〈Xf 〉). (30)

In section 2.2, we have shown that for Gaussian distributions the equivalence 〈f 〉m = 〈Xf 〉
holds; see equation (16). Therefore, we have

m(t) = m(0), (31)

for any t � 0. The mean value is neutrally stable in the sense that if we perturb the mean value
by an amount ε like m → m + ε then the mean value will maintain this perturbed value for
all times. Having discussed the evolution of the mean value, we turn next to the variance K.
The translational invariance of the linear discrepancy model implies that the evolution of the
variance K does not depend on the mean value m. That is, for m 	= 0 as well as for m = 0 we
obtain the same functions K(t). For the sake of convenience, we put m = 0 in what follows.
The evolution equations for K(t) = 〈X2(t)〉 can then be computed from the Fokker–Planck
equation (3). We obtain

d

dt
K(t) = −2α

(
〈f 〉K − Q

α

)
. (32)

Note that in the stationary case we have 〈f 〉stKst = Q/α which is the result obtained earlier
(see equation (23)). Using equations (4) and (29), we see that

〈f 〉 =
√

1

2π [K(t) + 1/λ]
. (33)

Consequently, equation (32) becomes

d

dt
K(t) = − 2α√

2π

√
K2

K + 1/λ︸ ︷︷ ︸
ξ(K)

+2Q. (34)

The function ξ(K) indicated in equation (34) is a strictly monotonically increasing function
satisfying ξ(K) = √

K for K → ∞ and ξ(0) = 0. Moreover, the right-hand side of

7



J. Phys. A: Math. Theor. 42 (2009) 155001 T D Frank

equation (34) vanishes at K = σ 2 defined by equation (28) (see section 2.2). Since ξ(K)

is strictly monotonically increasing, we have dK(t)/dt > 0 for K < σ 2 and dK(t)/dt < 0
for K > σ 2. Consequently, the fixed point K = σ 2 is globally stable, and any Gaussian
distribution converges to a stationary solution Pst(x|u) as defined by equations (27), (28):

lim
t→∞ PG(x, t) = Pst(x|u). (35)

The explicit graph K(t) can be obtained by solving equation (34) numerically for any
given initial condition K(0). On the one hand, our analysis shows how to compute time-
dependent Gaussian solutions PG(x, t) of the linear discrepancy model. On the other hand,
our analysis reveals that the stationary Gaussian probability density given by equations (27),
(28) corresponds to a fixed point in the two-dimensional plane spanned by the parameters m
and K and is neutrally stable in the m direction and globally stable in the K direction.

Next we construct an H-theorem to show that for arbitrary initial conditions solutions
of the linear discrepancy model (3) converge to the time-dependent Gaussian solutions PG

identified above. To this end, we follow previous studies [44, appendix B] and [41]. Let L(P )

denote the nonlinear Fokker–Planck operator,

L(P ) = α
∂

∂x

∫
�

f

(
x ′,

∫
�

x ′′P(x ′′, t) dx ′′
)

(x − x ′)P (x ′, t) dx ′ + Q
∂2

∂x2
, (36)

involving an arbitrary solution P(x, t) of equation (3). Let w(x, t) denote a probability density
that solves the linear Fokker–Planck equation

∂

∂t
w(x, t) = L(P )w(x, t). (37)

This Fokker–Planck equation describes a time-inhomogeneous process because the solution
P(x, t) of the nonlinear Fokker–Planck equation (3) acts as a driving force for the probability
density w(x, t). In other words, let Xw(t) denote the random variable of the process with
probability density w(x, t). Then, Xw(t) satisfies the Langevin equation

d

dt
Xw(t) = −α (〈f 〉P Xw(t) − 〈Xf 〉P ) +

√
Q�(t), (38)

with time-dependent expectation values

〈f 〉P =
∫

�

f (x, 〈X〉P )P (x, t) dx,

〈Xf 〉P =
∫

�

xf (x, 〈X〉P )P (x, t) dx, (39)

〈X〉P =
∫

�

xP (x, t) dx.

We define the functional [37]

H(t) =
∫

�

P (x, t) ln

(
P(x, t)

w(x, t)

)
dx � 0. (40)

Since the probability densities w and P satisfy the same Fokker–Planck operator, computation
of the time derivative of H yields the following well-known result from the theory of linear
Fokker–Planck equations [37]:

d

dt
H(t) = −Q

∫
�

P (x, t)

[
∂

∂x
ln

P(x, t)

w(x, t)

]2

dx � 0. (41)

From equations (40) and (41) we conclude that H(t) becomes constant for t → ∞ which
implies that the two solutions P(x, t) and w(x, t) approach each other:

lim
t→∞ [P(x, t) − w(x, t)] = 0. (42)

8
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We consider next the special case in which w(x, t) at time t = 0 corresponds to a Gaussian
distribution with mean mw(0) and variance Kw(0). A detailed calculation shows that the
time-inhomogeneous linear Fokker–Planck equation (37) exhibits time-dependent Gaussian
distributions

w(x, t) =
√

1

2πKw(t)
exp

{
− [x − mw(t)]2

2Kw(t)

}
, (43)

with
d

dt
mw(t) = −α (〈f 〉P mw(t) − 〈Xf 〉P ) (44)

and
d

dt
Kw(t) = −2α

(
〈f 〉P Kw(t) − Q

α

)
. (45)

As shown in equation (42), in the long-time limit the probability densities P and w approach
each other. Consequently, the expectation values 〈f 〉P , 〈Xf 〉P and 〈X〉P approach the
expectation values 〈f 〉w, 〈Xf 〉w and mw, respectively. This, in turn, implies that the structure
of the evolution equations (44) and (45) approaches the structure of the evolution equations (30)
and (32), respectively. In other words, the Gaussian probability density w(x, t) approaches a
Gaussian distribution PG(x, t) with constant mean and variance K defined by equation (34).
Recall that there are infinitely many Gaussian distributions PG(x, t) that differ with respect
to m(0) and K(0). Therefore, the statement above actually means that w(x, t) converges to
one member of the infinitely large family of Gaussian distributions PG(x, t). In this sense, the
limiting case

lim
t→∞ [w(x, t) − PG(x, t)] = 0 (46)

holds. Taking equations (35), (42) and (46) together, we see that for arbitrary initial
distributions P(x, 0) the solutions P(x, t) of the linear discrepancy model (3) converge to
a stationary probability density Pst(x|u) of the form (27), (28):

lim
t→∞ P(x, t) = lim

t→∞ w(x, t) = lim
t→∞ PG(x, t) = Pst(x|u). (47)

2.4. Transient behavior and risky shifts

As pointed out by Boster and colleagues [34], the linear discrepancy model predicts that
risky shifts emerge in discussion groups whose initial opinions are asymmetrically distributed.
For symmetric initial conditions the group opinion is constant. It is clear that the nonlinear
Fokker–Planck version (3) and (4) of the linear discrepancy model exhibits these features as
well. For initial distributions u(x + z) = u(z − x) symmetric with respect to a particular
mean value z, we have 〈Xf 〉 = 0 at any time t � 0. Consequently, the mean value 〈X〉 does
not change with time (hint: see the Langevin equation (5); see also section 2.3 on Gaussian
distributions). However, for asymmetric initial distributions u in general the expectation value
〈Xf 〉 will differ from zero. Consequently, the mean value 〈X〉 will evolve as a function of
time; see equation (5). In particular, if 〈X〉 > 0 and 〈Xf 〉 > 0 then the mean value 〈X〉 will
increase and we obtain a risky shift. In contrast, if 〈X〉 < 0 and 〈Xf 〉 < 0 then the mean value
〈X〉 will become even more negative and we obtain a cautious shift. Figures 2 and 3 illustrate
this situation by a numerical example for the risky shift.

We generated an ensemble of random variables that were distributed according to the
relatively flat and asymmetric probability density shown in figure 2. This distribution

9
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Figure 2. Initial and stationary probability density used in a simulation of the linear discrepancy
model (3) and (4). Parameters: λ = 0.5, α = 0.5 min−1,Q = 0.05 min−1.
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Figure 3. Evaluation of the group opinion 〈X(t)〉 (left panel) and the opinion variance σ 2(t) (right
panel) computed from simulated data. Parameters as in figure 2.

corresponds to the initial probability density of group opinions. We then simulated the
linear discrepancy model (3) and (4) by solving the Langevin equation (5). To this end, we
used the third (self-consistent plus averaging) method described in [33, page 40]. The final
and stationary distribution of opinions is shown in figure 2 as a clearly Gaussian distribution.
The group opinion (mean value 〈X〉) as a function of time increased for the parameters used in
the simulation and is shown in figure 3 (left panel). That is, figure 3 illustrates the emergence
of a risky shift during a decision-making process predicted by the linear discrepancy model.
In our simulation, the variance approached a stationary value as well (see the right panel of
figure 3). We checked the stationary level of the opinion variance and found that it was in
good approximation of the value σ 2 predicted by equation (24).

3. Conclusions

Using a nonlinear Fokker–Planck perspective we re-formulated a model proposed by Boster
and colleagues that describes the emergence of risky shifts during group decision making.

10
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We showed that the model predicts that finally the opinions of the group members will be
Gaussian distributed. It is clear that the Gaussian shape is a consequence of the assumed linear
interaction between group members and the assumption that variability is imposed on the
group members in the form of an additive noise term (additive fluctuating force). However, it
is well known that the Fokker–Planck approach to stochastic processes also allows us to model
nonlinear evolution equations. For example, if the linear discrepancy is replaced by a cubic
discrepancy like −α(x −〈X〉)3, then the cubic model would predict opinions distributed like a
Boltzmann distribution P ∝ exp{−cV } involving a fourth-order potential V = α(x−〈X〉)4/4,
where c can be determined by means of Monte Carlo simulation methods.

A multiplicative noise term interpreted according to the Ito calculus [37] would affect the
shape of the stationary distribution. For example, replacing

√
Q� in the Langevin equation (2)

by
√

QX(t)� would yield a model that exhibits stationary power-law distributions. However,
the mechanism proposed by Boster and colleagues that results in the risky shift would not be
affected by the choice of a multiplicative noise term—as long as the noise source is interpreted
according to Ito’s perspective and the state-dependent diffusion coefficient of the noise source
exhibits reflectional symmetry (x ↔ −x). That is, a multiplicative noise source would not
result in a risky shift as such, i.e. a symmetric initial distribution would not show a risky
shift irrespective of our choice of a noise term. The risky shift can only emerge if group
members have initially opinions that are asymmetrically distributed. This is the mechanism
suggested by Boster et al. In contrast, a multiplicative noise source interpreted according
to the Stratonovich calculus can result in a noise-induced drift and consequently lead to a
noise-induced risky shift. Consequently, a challenge for future experimental studies is to test
the hypothesis of asymmetry-induced risky shifts against the hypothesis of noise-induced risky
shifts.

We revealed a striking similarity between the linear discrepancy model and the Kuramoto
model. Both models predict that the variability is independent of the initial distribution. In
contrast, the mean opinion or behavior crucially depends on the initial distribution. In other
words, we are dealing with multistability. Multistability in turn is a characteristic feature of
many-body systems composed of interacting subsystems. In our context, the observation of
multistable solutions indicates that group decision making arises due to interaction between
group members and does not result from the impact of an external driving force.

While mean field models frequently exhibit a finite number of multistable stationary
solutions (see, e.g., the Desai–Zwanzig model [21] and the Takatsuji model [1, 33]), the linear
discrepancy model discussed in section 2.1 and the Kuramoto model exhibit an infinitely
large number of stationary solutions. The reason for this is the invariance of the respective
many-body systems against translations. That is, if we replace the coordinate x in the linear
discrepancy model (3) or in the Kuramoto model (22) by x + ξ (where ξ is constant), then the
evolution equations will maintain their structures and ξ eventually drops out of the equations.
In this context, it might be worthwhile to consider further examples of translational invariant
one-dimensional models for many-body systems with globally coupled subsystems. A famous
example in this regard is the Fisher–Eigen model [45–48]. The state variable x of the Fisher–
Eigen model describes the phenotype of species. Accordingly, P(x, t) corresponds to the
probability density of phenotypes observed at time t. Let us assume that the emergence
and vanishing of phenotypes is determined by a selection process that results in a directed
overall shift of phenotypes (see [47, section 8.2] or [49, 8.2.4]). Then the Fisher–Eigen model
reads

∂

∂t
P (x, t) = α

(
x −

∫
�

x ′P(x ′, t) dx ′
)

P(x, t) + Q
∂2

∂x2
P(x, t). (48)
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Note that the equation does not correspond to a drift-diffusion equation (or Fokker–Planck
equation). Rather, the Fisher–Eigen model should be regarded as a reaction–diffusion
model. Clearly, equation (48) exhibits translational invariance—just as equations (3) and
(22). Equations (3), (22) and (48) are examples of a class of translational invariant many-
body systems with globally coupled subsystems satisfying first-order dynamical evolution
equations. For models of this class, the following general statement holds: let p0(x, t) be
a particular solution, then p(x, t) = p0(x + ξ, t) for a constant ξ corresponds to a solution
as well. We implicitly exploited this statement in section 2.2 while discussing stationary
probability densities of the linear discrepancy model.

It should be pointed out that models for group behavior are not necessarily translational
invariant. For example, the Takatsuji model does not exhibit the symmetry property of
translational invariance [1, 33]. Let us briefly discuss implications of this observation.
Both the Takatsuji model and the linear discrepancy model describe interacting agents and
the emergence of multistability. However, the Takatsuji model predicts that groups finally
settle down in either of two modes (e.g. an altruistic mode versus a selfish mode; a risky
attitude versus a cautious attitude). That is, the Takatsuji model does not exhibit an infinitely
large set of possible stationary distributions. In particular, the stationary distributions related to
these two modes are completely defined by the model parameters. This discussion reveals that
in general models for group behavior and group decision making may be classified into two
types. Models that predict that statistical group properties depend on external circumstances
conceptualized as model parameters and models that predict that the evolution of group
properties is crucially influenced by the initial statistical group properties at the beginning of
an experiment. Again, experiments may be designed and conducted in order to test under
which conditions which of the two notions or two types of models reflect best group decision
making.
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